
Building a Security Program for SaaS Product

Development

Christian Bauer
BSides Munich, 16.05.2022

2

About Me

● Have been working on cloud security since ~2017
● Currently working as a security engineer for a

company with an as-a-service offering.

This talk summarizes my experiences collected
over these years.

3

Story line of this talk

● Today is your first working day at the startup ACME!
● You are the first security engineer hire. It’s your job

to help improving the security of their product.
● Their product is:

– A platform/software-as-a-service (PaaS/SaaS) offering
– Deployed on the well known hyperscalers (AWS, Azure, GCP, ...)
– Basic tech stack: containers, Kubernetes, some cloud provider

native services

5

Day 1 + 1 hour

Where to start?

How to approach this in
a structured way?

What are the low
hanging fruits?

What provides the
biggest impact?

Picture from https://unsplash.com/photos/5eThdzpVqyE

https://unsplash.com/photos/5eThdzpVqyE

6

A Product Security Roadmap for ACME (Day 2)

● Group security activities into different phases
● Phase 1: the basics
● Phase 2+: additional activities, grouped by

(perceived/opinionated) priorities

● Please note: your mileage may vary. Composition
of phases depends on: your background, current
security posture, in-company support, etc.

7

A Product Security Roadmap /2

Cloud Inventory SSO & MFA IAM Network Perimeter CSPM Centralized Logging

Vulnerability Management Incident Response (IR)

Security Baseline SDLC K8S Security improvements Pentests

Security Automation Infrastructure K8S Security Monitoring

IR playbooks

Risk assessments, threat modeling

Hardening: VM & container images

Hardening: CI/CD infrastructure Central log data sink monitoring

Security Trainings

IR: Game Days

Bug Bounty program

DevSecOps & xAST

Security Metrics Dashboard Secure-By-Default Building Blocks

}Phase
1

}Phase
2

}Phase
3

}Phase
4

Network Egress Filtering

BIA

8

Phase 1: Cloud Inventory (the first 1-2 weeks)

● Obtain a list of all existing cloud environments
(AWS accounts, GCP projects, …)

● What cloud provider services are in use? What
infrastructure is deployed? How is that
infrastructure configured?

● There are tools that can help with that: ScoutSuite
(AWS, Azure, GCP), Steampipe (AWS, Azure, GCP),
Cloudmapper (AWS), Cloudgraph (AWS), Prowler
(AWS), ...

9

Phase 1: Perimeter Protection

Identity & Access Mgmt (IAM) Network Perimeter
● This is super critical for Cloud provider

API: “Identity is the new perimeter”
● Eliminate long-term credentials s.a. AWS

IAM user access keys or passwords, GCP
service account user-managed keys, etc.
– For humans: only use SSO, with MFA
– For service accounts (SAs): use AWS IAM roles for

service accounts (for EKS), GCP Workload Identity
(for GKE), etc.

– Cross-provider IAM access for SAs: use identity
federation

● Review IAM policies of humans + service
accounts for overly permissive privileges

● Review resources with public IPs and
move them to private network zones,
where appropriate.

● Firewall review: identify and
eliminate ports open to the Internet
(ingress 0.0.0.0/0). In particular SSH
& RDP.

Setup automated
monitoring for all of

this!!

10

Phase 1: Security Monitoring

Cloud Security Posture Management (CSPM):
monitor your entire cloud environment for security
violations (IAM users or user-managed GCP service
account keys, public storage buckets, AWS IMDSv1, etc.).
You can use

● Cloud provider native service (AWS Security
Hub/Config, Azure Security Center/Policy, GCP
Security Command Center), OR

● Commercial 3rd party SaaS/tool, OR
● Open source tools (Cloud Custodian, Steampipe, …)

11

Phase 1: Define Incident Response Process

● Formalize the incident response process:
– Define the phases and their activities: Detection,

Analysis, Containment, Eradication, Recovery,
Post-Incident

– Setup repository for storing evidence
– Use issue tracking system to coordinate and

indicate progress
– Nominate contact persons: operations,

engineering, IT, customer support, legal, etc.

12

Phase 1: Centralized Logging

● You will need a source of truth for security incident
investigations.

● Setup a central log data sink with proper access control
(object storage such as AWS S3, GCP GCS, etc. might be the
most suitable; SIEM is another option).

● As a first step, forward cloud provider management API logs
to this sink (AWS CloudTrail, GCP admin activity logs, etc.)

● For querying this data sink, use AWS Athena, GCP BigQuery
or something similar. Serverless is the goal – the only
security engineer of ACME does not have (much) time for
infrastructure maintenance & operations.

13

Phase 1: Vulnerability Management

● Setup vulnerability scanning for
– Containers: commercial solutions, or open source

based (Anchore, Clair, Trivy)
– Host machines: commercial solutions, usually based

on agents running on those machines. Some cloud
providers also offer a solution.

– Prefer continuous scanning over CI/CD based scans:
because a one time scan at build time is not sufficient.

● Agree on patching SLAs with operations / engineering!

14

Survived the first few
months.

What are the next
steps?

15

Phase 2 Activities

● Define security baseline (secrets management, encryption policy, …)
– Also reuse existing frameworks s.a. CIS benchmarks that are available for AWS, Azure,

GCP, Kubernetes, Docker, etc.
– Work on establishing compliance to your baseline (monitor with CSPM for violations!)

● Kubernetes security improvements: securityContext for pod definitions (runAsUser,
allowPrivilegeEscalation, …) and network security policies (network perimeter inside K8S)

● Integrate Kubernetes security monitoring into your CSPM solution.
● Adopt a workflow orchestration framework for regularly executing your security tools (e.g.

repository credential scans, web application scanner, ...)
You can use a cloud provider service (AWS Step Functions, Azure Logic Apps, GCP Cloud
Workflows) or Kubernetes native frameworks (Argo Workflows, Tekton). Or a cron job in a
VM ;)

● Integrate security into the software development lifecycle (SDLC): perform security
reviews in the design phase.

● Perform regular pen tests (at least 1x / year)

16

Continue with phases 3
and 4.

Adapt and extend as
required.

17

Some final thoughts

● ACME is serving business customers, and some of
them are saying “we will only do business with you if
you have [SOC2, ...] compliance certifications”
– Compliance requirements can help you get security

work done
– And this is even a business driver generating more

revenue!
● Build relationships with other departments, in

particular with engineering. They should see you as a
valuable support function and not as a blocker.

18

Some Useful Reading Material

● Evan Johnson: “Starting a security program at a
startup”, AppSecCali 2019, Youtube Link

● Marco Lancini: “On Establishing a Cloud Security
Program”, May 18th 2021, Blog Link

● Scott Piper: “AWS Security Maturity Roadmap”,
January 2021, PDF Link

● CNCF TAG Security: Cloud Native Security
Whitepaper, v2, May 2022

https://www.youtube.com/watch?v=6iNpqTZrwjE&list=PLpr-xdpM8wG-bXotGh7OcWk9Xrc1b4pIJ&index=19
https://www.marcolancini.it/2021/blog-cloud-security-roadmap/
https://summitroute.com/downloads/aws_security_maturity_roadmap-Summit_Route.pdf

19

Thank you for your attention.

contact@christianb.net

Picture from https://unsplash.com/photos/5eThdzpVqyE

https://unsplash.com/photos/5eThdzpVqyE

20

Backup Slides

21

Phase 1: SSO (more of a corporate/enterprise
security topic)

● Introduce Single-Sign On (SSO) and multifactor
authentication (MFA)
– This really helps with employee off-boarding
– Replaces static user credentials (e.g. AWS IAM

users with access keys) used to access your
cloud environments

– Consider hardware-based authenticator as 2nd
factor at least for production systems (e.g.
FIDO2)

22

Phase 3 Activities

● Setup network traffic egress filtering, usually by deploying a network proxy in your VPCs (e.g. Squid)
● Setup automated security monitoring for log data ingested into the central log data sink (see phase

1)
● Harden your CI/CD infrastructure, it is a critical infrastructure component!
● Introduce Business Impact Assessments (BIAs) to determine component/service criticality level

(based on CIA ratings). This determines how much security attention a component/service will need.
● Define playbooks for the most common (or expected) security incidents
● Introduce threat modeling and a risk management process. The CIS Risk Assessment Method (RAM)

is a good starting point.
● Shift security left: integrate SAST tools into your CI/CD pipelines. Or run DAST tools from your

security automation platform. Some examples:
– Secrets scanning: gitLeaks, git-secrets, detect-secrets, TruffleHog, ...
– Container vulnerability scanning tools (see phase 1)
– Infrastructure code scanning: Checkov, kics, terrascan, tfsec, ...
– Generic source code scanning: semgrep, …
– Web security scans: https://github.com/psiinon/open-source-web-scanners

https://github.com/psiinon/open-source-web-scanners

23

Phase 4 Activities

● Setup a security training program for engineering (you should know the
common problems by now)

● Perform game days to test your incident response procedures
● Hardening of virtual machine and container images:

– Follow CIS benchmarks for OS level hardening
– Think about using distroless container base images
– Provide hardened base images that can be used by engineering

● Collect security related metrics and present them in a dashboard
● Setup a bug bounty program
● Provide secure-by-default building blocks to engineering: e.g.

infrastructure code for network reference architecture, misuse-resistant
JWT validation library, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

